


Fig. 12.4 Dimensions for wall A.

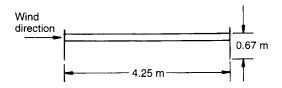



Fig. 12.5 Dimensions for wall B.

Total second moment of area for the building

$$\Sigma I = 12 I_{A} + 4I_{B}$$
$$= 12 \times 1.734 + 4 \times 1.7 = 27.61 \text{ m}^{4}$$

Moment carried by wall A

$$M_{\rm A}$$
 = total moment ×  $I_{\rm A}/\Sigma I$  = (1.734/27.61)  $M$  = 0.06266  $M$ 

and moment carried by wall B

$$M_{\rm B} = (1.7/27.61)M = 0.0616 M$$

Similarly, shear force carried by wall A

$$SF_A = \text{total force} \times I_A / \Sigma I = 0.06266 F$$

and shear force carried by wall B

$$SF_{\rm B} = \text{total force} \times I_{\rm A}/\Sigma I = 0.0616 F$$

The calculated values of the SF are given in Table 12.3.

## 12.6 DESIGN LOAD

## 12.6.1 Load combination for ultimate limit state, wall A: clause 22, BS 5628

- (a) Sixth floor
- (i) Dead and imposed loads dead+imposed= $1.4G_k+1.6Q_k$

Table 12.3 Distribution of bending moment stresses and shear force in walls

| Just above floor level           |                                                                                                                                                                                                   | Wall A                       |                        | Wall B                       |                          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|------------------------------|--------------------------|
|                                  |                                                                                                                                                                                                   | Bending<br>stress<br>(N/mm²) | Shear<br>force<br>(kN) | Bending<br>stress<br>(N/mm²) | Shear<br>force<br>) (kN) |
| ,                                | $\frac{AY}{A} = \frac{0.06266 \times 131.9^{a}}{1.734} \times \frac{2.125}{10^{3}}$ $\frac{AY}{AY} = \frac{0.0616 \times 131.9^{a}}{1.7 \times 10^{3}} \times 2.125$                              | ± 0.01                       | 5.5                    | ± 0.01                       | 5.41                     |
| 5th floor<br>wall A<br>wall B    | $= \frac{0.06266 \times 527.6^{\circ} \times 2.125}{1.734 \times 10^{3}}$ $= \frac{0.0616 \times 527.6 \times 2.125}{1.7 \times 10^{3}}$                                                          | ± 0.04                       | 11.0                   | ± 0.04                       | 10.83                    |
| 4th floor<br>wall A<br>wall B    | $= \frac{0.06266 \times 2.125}{1.734 \times 10^{3}} \times 1187.2^{a}$ $= 0.0000768 \times 1187.2$ $= \frac{0.0616 \times 2.125}{1.7 \times 10^{3}} \times 1187.2^{a}$ $= 0.000077 \times 1187.2$ | ± 0.09                       | 16.5                   | ± 0.09                       | 16.24                    |
| 3rd floor<br>wall A<br>wall B    | $= 0.768 \times 10^{-4} \times 2110.54^{a}$ $= 0.77 \times 10^{-4} \times 2110.54^{a}$                                                                                                            | ± 0.162                      | 22.0                   | ± 0.163                      | 21.65                    |
| 2nd floor<br>wall A<br>wall B    | $= 0.768 \times 10^{-4} \times 3297.7^{a}$ $= 0.77 \times 10^{-4} \times 3297.7^{a}$                                                                                                              | ± 0.253                      | 27.5                   | ± 0.254                      | 27.06                    |
| 1st floor<br>wall A<br>wall B    | $= 0.768 \times 10^{-4} \times 4748.71^{a}$ $= 0.77 \times 10^{-4} \times 4748.71^{a}$                                                                                                            | ± 0.365                      | 33.0                   | ± 0.366                      | 32.5                     |
| Ground floor<br>wall A<br>wall B | $= 0.768 \times 10^{-4} \times 6463.72^{a}$ $= 0.77 \times 10^{-4} \times 6463.72^{a}$                                                                                                            | ± 0.496                      | 38.50                  | ±0.498                       | 37.9                     |

<sup>&</sup>lt;sup>a</sup> From section 12.5.2